3,193 research outputs found

    Kinetic induced phase transition

    Full text link
    An Ising model with local Glauber dynamics is studied under the influence of additional kinetic restrictions for the spin-flip rates depending on the orientation of neighboring spins. Even when the static interaction between the spins is completely eliminated and only an external field is taken into account the system offers a phase transition at a finite value of the applied field. The transition is realized due to a competition between the activation processes driven by the field and the dynamical rules for the spin-flips. The result is based on a master equation approach in a quantum formulation.Comment: 13 page

    Queueing process with excluded-volume effect

    Full text link
    We introduce an extension of the M/M/1 queueing process with a spatial structure and excluded- volume effect. The rule of particle hopping is the same as for the totally asymmetric simple exclusion process (TASEP). A stationary-state solution is constructed in a slightly arranged matrix product form of the open TASEP. We obtain the critical line that separates the parameter space depending on whether the model has the stationary state. We calculate the average length of the model and the number of particles and show the monotonicity of the probability of the length in the stationary state. We also consider a generalization of the model with backward hopping of particles allowed and an alternate joined system of the M/M/1 queueing process and the open TASEP.Comment: 9 figure

    Hierarchy of boundary driven phase transitions in multi-species particle systems

    Full text link
    Interacting systems with KK driven particle species on a open chain or chains which are coupled at the ends to boundary reservoirs with fixed particle densities are considered. We classify discontinuous and continuous phase transitions which are driven by adiabatic change of boundary conditions. We build minimal paths along which any given boundary driven phase transition (BDPT) is observed and reveal kinetic mechanisms governing these transitions. Combining minimal paths, we can drive the system from a stationary state with all positive characteristic speeds to a state with all negative characteristic speeds, by means of adiabatic changes of the boundary conditions. We show that along such composite paths one generically encounters ZZ discontinuous and 2(K−Z)2(K-Z) continuous BDPTs with ZZ taking values 0≀Z≀K0\leq Z\leq K depending on the path. As model examples we consider solvable exclusion processes with product measure states and K=1,2,3K=1,2,3 particle species and a non-solvable two-way traffic model. Our findings are confirmed by numerical integration of hydrodynamic limit equations and by Monte Carlo simulations. Results extend straightforwardly to a wide class of driven diffusive systems with several conserved particle species.Comment: 12 pages, 11 figure

    Through a glass, less darkly? Reassessing convergent and divergent validity in measures of implicit self-esteem

    No full text
    Self-esteem has been traditionally assessed via self-report (explicit self-esteem: ESE). However, the limitations of self-report have prompted efforts to assess self-esteem indirectly (implicit self-esteem: ISE). It has been theorized that ISE and ESE reflect the operation of largely distinct mental systems. However, although low correlations between measures of ISE and ESE empirically support their discriminant validity, similarly low correlations between different measures of ISE do not support their convergent validity. We explored whether such patterns would reemerge if more recently developed, specific, and reliable ISE measures were used. They did, although some convergent validity among ISE measures emerged once confounds resulting from conceptual mismatch, individual differences, and random variability were minimized. Nonetheless, low correlations among ISE measures are not primarily caused by the usual psychometric suspects, and may be the result of other factors including subtle differences between structural features of such measures

    On U_q(SU(2))-symmetric Driven Diffusion

    Full text link
    We study analytically a model where particles with a hard-core repulsion diffuse on a finite one-dimensional lattice with space-dependent, asymmetric hopping rates. The system dynamics are given by the \mbox{Uq_{q}[SU(2)]}-symmetric Hamiltonian of a generalized anisotropic Heisenberg antiferromagnet. Exploiting this symmetry we derive exact expressions for various correlation functions. We discuss the density profile and the two-point function and compute the correlation length Οs\xi_s as well as the correlation time Οt\xi_t. The dynamics of the density and the correlations are shown to be governed by the energy gaps of a one-particle system. For large systems Οs\xi_s and Οt\xi_t depend only on the asymmetry. For small asymmetry one finds Οt∌Οs2\xi_t \sim \xi_s^2 indicating a dynamical exponent z=2z=2 as for symmetric diffusion.Comment: 10 pages, LATE

    Solution of a class of one-dimensional reaction-diffusion models in disordered media

    Full text link
    We study a one-dimensional class of reaction-diffusion models on a 10−10-parameters manifold. The equations of motion of the correlation functions close on this manifold. We compute exactly the long-time behaviour of the density and correlation functions for {\it quenched} disordered systems. The {\it quenched} disorder consists of disconnected domains of reaction. We first consider the case where the disorder comprizes a superposition, with different probabilistic weights, of finite segments, with {\it periodic boundary conditions}. We then pass to the case of finite segments with {\it open boundary conditions}: we solve the ordered dynamics on a open lattice with help of the Dynamical Matrix Ansatz (DMA) and investigate further its disordered version.Comment: 11 pages, no figures. To appear in Phys.Rev.

    Why spontaneous symmetry breaking disappears in a bridge system with PDE-friendly boundaries

    Full text link
    We consider a driven diffusive system with two types of particles, A and B, coupled at the ends to reservoirs with fixed particle densities. To define stochastic dynamics that correspond to boundary reservoirs we introduce projection measures. The stationary state is shown to be approached dynamically through an infinite reflection of shocks from the boundaries. We argue that spontaneous symmetry breaking observed in similar systems is due to placing effective impurities at the boundaries and therefore does not occur in our system. Monte-Carlo simulations confirm our results.Comment: 24 pages, 7 figure

    Reaction-controlled diffusion

    Get PDF
    The dynamics of a coupled two-component nonequilibrium system is examined by means of continuum field theory representing the corresponding master equation. Particles of species A may perform hopping processes only when particles of different type B are present in their environment. Species B is subject to diffusion-limited reactions. If the density of B particles attains a finite asymptotic value (active state), the A species displays normal diffusion. On the other hand, if the B density decays algebraically ~t^{-a} at long times (inactive state), the effective attractive A-B interaction is weakened. The combination of B decay and activated A hopping processes gives rise to anomalous diffusion, with mean-square displacement ~ t^{1-a} for a < 1. Such algebraic subdiffusive behavior ensues for n-th order B annihilation reactions (n B -> 0) with n >=3, and n = 2 for d < 2. The mean-square displacement of the A particles grows only logarithmically with time in the case of B pair annihilation (n = 2) and d >= 2 dimensions. For radioactive B decay (n = 1), the A particles remain localized. If the A particles may hop spontaneously as well, or if additional random forces are present, the A-B coupling becomes irrelevant, and conventional diffusion is recovered in the long-time limit.Comment: 7 pages, revtex, no figures; latest revised versio

    Exact time-dependent correlation functions for the symmetric exclusion process with open boundary

    Get PDF
    As a simple model for single-file diffusion of hard core particles we investigate the one-dimensional symmetric exclusion process. We consider an open semi-infinite system where one end is coupled to an external reservoir of constant density ρ∗\rho^\ast and which initially is in an non-equilibrium state with bulk density ρ0\rho_0. We calculate the exact time-dependent two-point density correlation function Ck,l(t)≡−C_{k,l}(t)\equiv - and the mean and variance of the integrated average net flux of particles N(t)−N(0)N(t)-N(0) that have entered (or left) the system up to time tt. We find that the boundary region of the semi-infinite relaxing system is in a state similar to the bulk state of a finite stationary system driven by a boundary gradient. The symmetric exclusion model provides a rare example where such behavior can be proved rigorously on the level of equal-time two-point correlation functions. Some implications for the relaxational dynamics of entangled polymers and for single-file diffusion in colloidal systems are discussed.Comment: 11 pages, uses REVTEX, 2 figures. Minor typos corrected and reference 17 adde
    • 

    corecore